Algorithms for NP-hard Optimization Problems and Cluster Analysis
نویسنده
چکیده
Algorithms for NP-hard Optimization Problems and Cluster Analysis by Nan Li The set cover problem, weighted set cover problem, minimum dominating set problem and minimum weighted dominating set problem are all classical NP-hard optimization problems of great importance in both theory and real applications. Since the exact algorithms, which require exhaustive exploration of exponentially many options, are infeasible in practice, approximation algorithms and heuristic algorithms are widely used to find reasonably good solutions in polynomial time. I propose novel algorithms for these four problems. My algorithms for the weighted set cover and minimum weighted dominating set problems are based on a three-step strategy. For the weighted set cover problem, in the first step, we reserve the sets indispensable for the optimal solution and reduce the problem size. In the second step, we build a robust solution with a novel greedy heuristic. Sets are iteratively selected according to a measure which integrates the weight, the coverage gain for the current iteration and the global coverage capacity of each set. It favors the sets that have smaller weights and better extend or consolidate the coverage, especially on the items that are contained in less sets. Since the obtained solution tends to have a robust coverage, in the third step, we further improve it by removing the redundant sets in an efficient way. For the minimum weighted dominating set problem, we first reserve the indispensable vertices for the optimal solution. Then we convert it into a weighted set cover problem to solve it. These two algorithms can be used to solve the set cover problem and minimum dominating set problem by simply considering all the sets or vertices as having the same weights. Extensive experimental evaluations on a large number of synthetic and real-world set cover instances and graphs from many domains demonstrate the
منابع مشابه
New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problems (GTSP)
Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to fi...
متن کاملApplications of two new algorithms of cuckoo optimization (CO) and forest optimization (FO) for solving single row facility layout problem (SRFLP)
Nowadays, due to inherent complexity of real optimization problems, it has always been a challenging issue to develop a solution algorithm to these problems. Single row facility layout problem (SRFLP) is a NP-hard problem of arranging a number of rectangular facilities with varying length on one side of a straight line with aim of minimizing the weighted sum of the distance between all facility...
متن کاملAn Improved Bat Algorithm with Grey Wolf Optimizer for Solving Continuous Optimization Problems
Metaheuristic algorithms are used to solve NP-hard optimization problems. These algorithms have two main components, i.e. exploration and exploitation, and try to strike a balance between exploration and exploitation to achieve the best possible near-optimal solution. The bat algorithm is one of the metaheuristic algorithms with poor exploration and exploitation. In this paper, exploration and ...
متن کاملA modified elite ACO based avoiding premature convergence for travelling salesmen problem
The Travelling Salesmen Problem (TSP) is one of the most important and famous combinational optimization problems that aim to find the shortest tour. In this problem, the salesman starts to move from an arbitrary place called depot and after visiting all nodes, finally comes back to depot. Solving this problem seems hard because program statement is simple and leads this problem belonging to NP...
متن کاملA multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project
This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...
متن کامل